基于矿物质元素指纹分析技术的浦城大米产地溯源研究
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TS 213.3

基金项目:

福建省科技计划项目(2022Y0060)


Study on Origin Traceability of Pucheng Rice Using Mineral Element Fingerprinting Analysis Technology
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    通过分析浦城大米、江西地区大米、湖北地区大米、湖南地区大米和福建地区(除浦城以外)大米中25种矿物质元素质量分数特征,筛选出14种差异显著的矿物质元素,并比较主成分分析(PCA)和正交偏最小二乘判别分析(OPLS-DA)对矿物质元素的降维效果,发现经过PCA降维后的线性判别分析(LDA)结果优于OPLS-DA,进而建立了“差异分析+主成分分析+判别分析”的浦城大米产地溯源模型,筛选出钒(V)、钴(Co)、砷(As)、铷(Rb)、银(Ag)、铯(Cs)等6种特征矿物质元素,判别模型回代检验的整体正确判别率为98.1%,交叉检验的整体正确判别率为97.1%。该模型能准确识别浦城大米,为浦城大米的产地溯源和质量控制提供了参考。

    Abstract:

    By analyzing the mass fraction characteristics of 25 mineral elements in Pucheng rice, rice from Jiangxi region, rice from Hubei region, rice from Hunan region, and rice from other Fujian region, 14 mineral elements with significant differences were screened out. After dimension reduction of mineral elements by principal component analysis (PCA) and orthogonal partial least-squares discriminant analysis (OPLS-DA), the results of linear discriminant analysis (LDA) after dimension reduction by PCA were found to be superior to OPLS-DA. Consequently, a Pucheng rice origin traceability model of “difference analysis + principal component analysis + discriminant analysis” was established, and six characteristic mineral elements, i.e., vanadium(V), cobalt (Co), arsenic(As), rubidium(Rb), silver(Ag), and cesium(Cs), were selected. The overall correct discrimination accuracy of the back-substitution test for the discriminant model was 98.1%, and the overall correct discrimination accuracy of the cross-validation was 97.1%. It can accurately identify Pucheng rice, providing a reference for the origin traceability and quality control of Pucheng rice.

    参考文献
    相似文献
    引证文献
引用本文

林 滉,林 秀,谢婷婷,张青龄.基于矿物质元素指纹分析技术的浦城大米产地溯源研究[J].食品与生物技术学报,2024,43(5):91-100.

LIN Huang, LIN Xiu, XIE Ting-ting, ZHANG Qing-ling. Study on Origin Traceability of Pucheng Rice Using Mineral Element Fingerprinting Analysis Technology[J]. Journal of Food Science and Biotechnology,2024,43(5):91-100.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-07-18
  • 出版日期:
文章二维码

版权所有:《食品与生物技术学报》编辑部

地址:江苏省无锡市蠡湖大道1800号  邮政编码:214122

电话:0510-85913526  电子邮件:xbbjb@jiangnan.edu.cn

技术支持:北京勤云科技发展有限公司

微信公众号二维码

手机版网站二维码