蚁群和遗传算法优化花茶花青素近红外光谱预测模型的比较
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:


Optimization of NIR Spectroscopy Based on Ant Colony Optimization and Genetic Algorithm for the Anthocyanin Content in Scented Tea
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    以建立花茶花青素含量的最优近红外光谱模型为目标,对比研究了蚁群算法(Ant Colony Optimization, ACO)和遗传算法(Genetic Algorithm, GA)优化近红外光谱谱区的效果。ACO-iPLS将全光谱划分为12个子区间时,优选出第1、9、10共3个子区间,所建的校正集和预测集相关系数分别为0.901 3和0.864 2;交互验证均方根误差(RMSECV)和预测均方根误差(RMSEP)分别为0.160 0 mg/g和0.202 0 mg/g;GA-iPLS将全光谱划分为15个子区间时,优选出第1、5共2个子区间,所建模型的校正集和预测集相关系数分别为0.906 3和0.879 3,交互验证均方根误差(RMSECV)和预测均方根误差(RMSEP)分别为0.156 0 mg/g和0.206 0 mg/g。研究结果表明: ACO-iPLS和GA-iPLS均可以有效选择近红外光谱特征波长,其中GA-iPLS模型的精度更高。

    Abstract:

    Optimization of Near infrared (NIR) spectroscopy for quantitative analysis of the anthocyanin content in scented tea was discussed by selecting the optimal spectra intervals from the whole NIR spectroscopy using two variable models: Ant colony optimization interval partial least squares (ACO-iPLS) and Genetic Algorithm interval partial least squares (GA-iPLS). The ACO-iPLS full-spectrum was split into 12 intervals. The optimal intervals selected were the 1st interval, 9th interval and 10th interval. The calibration and prediction correlation coefficient of ACO-iPLS model were 0.901 3 and 0.864 2, in which the root mean square error of cross validation (RMSECV) of 0.160 0 mg/g and the root mean square error of prediction (RMSEP) of 0.206 0 mg/g were achieved. As in the GA-iPLS model, the data set was split into 15 intervals for optimization where 1st and 5th intervals were selected. The calibration and prediction correlation coefficient of GA-iPLS model were 0.901 3 and 0.864 2, and the RMSECV and RMSEP of GA-iPLS models based on these intervals were 0.156 0 mg/g and 0.206 0 mg/g, respectively. The results showed that both ACO-iPLS and GA-iPLS models could efficiently select spectrum intervals for quantitative analysis of anthocyanin in scented tea. The optimal GA-iPLS model had better performance with higher accuracy.

    参考文献
    相似文献
    引证文献
引用本文

李艳肖,黄晓玮,邹小波,赵杰文,石吉勇,张小磊.蚁群和遗传算法优化花茶花青素近红外光谱预测模型的比较[J].食品与生物技术学报,2015,34(6):575-583.

LI Yanxiao, HUANG Xiaowei, ZOU Xiaobo, ZHAO Jiewen, SHI Jiyong, ZHANG Xiaolei. Optimization of NIR Spectroscopy Based on Ant Colony Optimization and Genetic Algorithm for the Anthocyanin Content in Scented Tea[J]. Journal of Food Science and Biotechnology,2015,34(6):575-583.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2015-08-09
  • 出版日期:
文章二维码

版权所有:《食品与生物技术学报》编辑部

地址:江苏省无锡市蠡湖大道1800号  邮政编码:214122

电话:0510-85913526  电子邮件:xbbjb@jiangnan.edu.cn

技术支持:北京勤云科技发展有限公司

微信公众号二维码

手机版网站二维码