基于支持向量机和模糊推理的毕赤酵母发酵过程故障诊断
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:


Fault Diagnosis for Pichia pastoris Fermentation Based on a Hybrid Support Vector Machine and Fuzzy Reasoning Technique
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    利用甲醇营养型毕赤酵母发酵生产外源蛋白过程中, 诱导期培养基中甲醇浓度波动严重影响发酵过程的稳定性。为此提出了基于智能型模式识别的发酵故障诊断系统。在某一时间窗口内, 利用支持向量机分类器对可在线测量的过程参数(发酵时间、搅拌转速、甲醇流加速率、O2消耗速率OUR、CO2释放速率CER)进行状态分类, 并结合模糊推理技术将发酵状态划分成甲醇浓度"适中"、"过量"、"匮乏"的3种模式, 构建智能型的故障诊断系统。在甲醇浓度不当的情况下, 该系统均能准确地判别出故障类型。通过补加甲醇或甘油, 可以对"错误"发酵批次进行补救。

    Abstract:

    In heterologous protein production by methylotrophic Pichia pastoris, the methanol concentration variation in culture medium severely affects fermentation stability. An intelligent pattern recognition based fault diagnosis system was thus proposed to solve the problem. A support vector machine classifier(SVM) was firstly used to categorize the on-line measurable parameters(fermentation time, agitation rate, methanol consumption rate, O2 uptake rate OUR and CO2 evolution rate CER) within a moving-window, and then the SVM was combined with fuzzy reasoning technique to construct an unique intelligent fault diagnosis system, which could classify the fermentation physiological states into 3 catagories of methanol "in shortage", "medium", and "in excess". In the cases of improper methanol concentration, the system could accurately identify the faults and their type. Then those failure-likelihood fermentations could be rescued by adding methanol or glycerol.

    参考文献
    相似文献
    引证文献
引用本文

高敏杰,丁健,张许,高鹏.基于支持向量机和模糊推理的毕赤酵母发酵过程故障诊断[J].食品与生物技术学报,2014,33(11):1182-1190.

GAO MinJie, DING Jian, ZHANG Xu, GAO Peng. Fault Diagnosis for Pichia pastoris Fermentation Based on a Hybrid Support Vector Machine and Fuzzy Reasoning Technique[J]. Journal of Food Science and Biotechnology,2014,33(11):1182-1190.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2014-12-19
  • 出版日期:
文章二维码

版权所有:《食品与生物技术学报》编辑部

地址:江苏省无锡市蠡湖大道1800号  邮政编码:214122

电话:0510-85913526  电子邮件:xbbjb@jiangnan.edu.cn

技术支持:北京勤云科技发展有限公司

微信公众号二维码

手机版网站二维码